Buracos negros no LHC podem indicar universos paralelos

Buracos-negros-no-LHC-podem-indicar-universos-paralelos-720x320

A possibilidade de que outros universos existem além do nosso próprio universo é tentadora, mas parece quase impossível de testar. Agora, um grupo de físicos sugeriu que o Grande Colisor de Hádrons (LHC), o maior acelerador de partículas do mundo, pode ser capaz de descobrir a existência de universos paralelos.

Em um novo estudo publicado na Physics Letters B, Ahmed Ali Farag, Mir Faizal, e Mohammed M. Khalil explicam que a chave para encontrar universos paralelos pode vir da detecção buracos negros em miniatura em um certo nível de energia. A detecção dos mini buracos negros indicaria a existência de dimensões extras, que por sua vez apoiariam a teoria das cordas e modelos relacionados que prevêem a existência de dimensões extras, bem como universos paralelos.

“Normalmente, quando as pessoas pensam sobre o multiverso, pensam na Interpretação dos Muitos Mundos da mecânica quântica, onde todas as possibilidades se concretizam”, Faizal disse ao Phys.org. “Isso não pode ser testado e por isso é filosofia e não ciência. Isso não é o que queremos dizer com universos paralelos. O que queremos dizer é universos reais em dimensões extras. Como a gravidade pode fluir do nosso universo para as dimensões extras, tal modelo pode ser testado pela detecção de mini-buracos negros no LHC. Nós calculamos a energia em que esperamos para detectar esses mini buracos negros no arco-íris da gravidade [a nova teoria]. Se nós detectarmos mini-buracos negros nesta energia, então saberemos que o arco-íris da gravidade e as dimensões extras estão corretas.

De certa forma, essa ideia não é nova. O LHC já procurou detectar mini buracos negros, mas veio de mãos vazias. Isto é o que seria de esperar se existirem apenas quatro dimensões, uma vez que a energia necessária para produzir buracos negros em quatro dimensões seria muito maior (1019 GeV) do que a energia que pode ser obtida no LHC (14 TeV).

No entanto, se existem dimensões extras, pensa-se que elas iriam reduzir a energia necessária para produzir buracos negros a níveis que o LHC pode alcançar. Como Faizal explicou, isso acontece porque a gravidade em nosso universo de alguma forma pode fluir para as dimensões extras. Como o LHC até agora não detectou mini-buracos negros, parece que as dimensões extras não existem, pelo menos não na escala de energia que foi testado. Por extensão, os resultados não suportavam a teoria das cordas ou universos paralelos.

Em seu artigo, Ali, Faizal, e Khalil oferecem uma interpretação diferente para o porquê mini buracos negros não foram detectados no LHC. Eles sugerem que o atual modelo de gravidade que foi utilizado para prever o nível de energia necessário para a produção de buracos negros não é muito preciso, pois não leva em conta os efeitos quânticos.

De acordo com a Relatividade de Einstein, a gravidade é representada pela curvatura do espaço e do tempo. No entanto, aqui os cientistas apontam que esta geometria do espaço e do tempo responsável pela gravidade fica deformada na escala de Planck. Eles usaram a nova teoria do arco-íris da gravidade para explicar essa modificação da geometria do espaço e do tempo perto da escala de Planck, onde os mini buracos negros são previstos para existir.

Usando o arco-íris da gravidade, os cientistas descobriram que um pouco mais de energia é necessária para produzir mini-buracos negros no LHC do que se pensava anteriormente. Até agora, o LHC tem procurado mini-buracos negros em níveis de energia abaixo de 5,3 TeV. De acordo com o arco-íris da gravidade, esta energia é muito baixa. Em vez disso, o modelo prevê que os buracos negros podem se formar em níveis de energia de, pelo menos, 9,5 TeV em seis dimensões e 11,9 TeV em 10 dimensões. Uma vez que o LHC foi projetado para atingir 14 TeV em futuras execuções, essas necessidades energéticas previstas para a produção de mini buracos negros devem ser acessíveis em breve.

Vale frisar que os mini buracos negros produzidos em laboratório não representam o menor risco para a Terra, pois, uma vez que se formam, eles desaparecem em uma fração de segundos.

Fonte: phys.org
Anúncios
por Professor Leandro Aguiar Fernandes

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s